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1 Applying Regularity Structures to Rough Path Theory
and Singular PDEs

1.1 Recovering a previous theorem as an application of the reconstruc-
tion theorem

For our rough path theory, we choose A = {α− 1, 2α− 1, 0, α} with α ∈ (1/3, 1/2). Here,
Tα = 〈X1, . . . , X`〉, where we think of X = (X1, . . . , X`) as an abstract candidate for the

path x(·) ∈ Cα, Tα−1 = 〈Ẋ1, . . . , Ẋ`〉, and T2α−1 = 〈 ˙Xi,j : 1 ≤ i, j ≤ `. We think of
Ẋ = [Xi,j ] = X ⊗ Ẋ. From this, we have

ΓhX = X + h1, ΓhẊ = Ẋ, Γh(X ⊗ Ẋ) = X ⊗ Ẋ + h⊗ Ẋ.

Recall that f : Rd →
⊕

α<γ Tα ∈ C
γ
M means ‖f(s) − Γstf(t)‖α . |s − t|γ−α. So if we

decrease the index, the regularity required would be rougher. Last time, we argued that if
Y (t) = y(t)1 + ŷ(t) ·X ∈ C2αM , then the pair y(t) = (y(t), ŷ(t)) ∈ G α(x), i.e.

|ŷ(t)− ŷ(s)| . |t− s|α, |y(t)− y(s)− ŷ(s)x(s, t)| . |t− s|2α.

Now we want to examine another algebraic manipulation in our abstract setting, namely
we wish to make sense of Y · Ẋ, which we want to think of as (y1+ ŷX) · Ẋ = yẊ+ X̂⊗ Ẋ.
Because of this, consider

(Y · Ẋ)(t) = yẊ + ŷẊ.

Proposition 1.1. (y, ŷ) ∈ G α(x) if and only if Y · Ẋ ∈ C3α−1M .

Proof.

(Y · Ẋ)(s)− Γs,t(Y · Ẋ)(t) = (y(s)Ẋ + ŷ(s)Ẋ)− (y(t)Ẋ + ŷ(t)Ẋ + (̂s)x(t, s)Ẋ)

= (y(s)− y(t)− ŷ(s)x(t, s))Ẋ + (ŷ(s)− ŷ(t))Ẋ

For the first coefficient, we want the estimate

|y(s)− y(t)− ŷ(s)x(t− s)| . |t− s|γ−(α−1) = |t− s|2α.
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This is exactly the estimate for the Gubinelli derivative. Similarly, we want

|ŷ(s)− ŷ(t)| . |t− s|γ−(2α−1) = |t− s|α.

This gives the equivalence.

Now we wish to apply our reconstruction theorem to Y · Ẋ. More precisely, there exists
some operator J3α−1

M on C3α−1M such that W := J3α−1
M (Y · Ẋ) satisfies

|(W −Πt(y(t)Ẋ + +ŷ(t)Ẋ))(ψδt )| . δ3α−1.

Equivalently,
|W (ψδt )− (y(t)ẋ+ ŷ(t)Xt(t, ·))(ψδt )| . δ3α−1.

This is indeed the first theorem we proved in this class, namely given y = (y, ŷ) ∈ G α(x)
and x = (x,X) ∈ Rα,2α, there exists z ∈ Cα such that

|z(s)− z(t)− y(t)(x(s)− x(t))− ŷ(t)X(t, s)| . |t− s|3α−1

with ż = W .
To derive this theorem from estimate above it, we need to allow a ψ that is of the form

ψ(t) = 1[0,1](t) sot that ψδt (s) = 1
δ1[t,t+δ](s). This can be achieved by writing

1[0,1] =
∞∑
n=0

ϕn(t) + ψn(t),

where ψn, ϕn are smooth with compact support, suppϕn ⊆ [0, 2−n], and suppψn ⊆ [1 −
2−n, 1].

1.2 Applying regularity structure theory to understand a singular PDE

We now turn our attention to one of our singular PDE, say the KPZ equation{
ht = hxx + h2x + ξ − C
h(x, 0) = h0(x),
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where ξ is white noise. As we argued before, if ξε = ξ ∗x χε with χε(x) = 1
εχ(xε ), then the

corresponding PDE
hεt = hεxx + (hεx)2 + ξε − Cε

is well-posed, and limε→0 h
ε exists only if Cε ≈ C/ε, where C = 1

2

∫
χ2 (a theorem due to

Martin Hairer).
To achieve this, we first build an abstract version of our PDE and usr it to have an

abstract solution that is continuous with respect to its input (which in cludes a well-selected
version of ξ). Indeed, if we write P for the operator/kernel (∂t − ∂2x)−1, then

h = P ∗ (h2x + ξ − C) + P ∗ h0 = F(h).

Then we would make sense of F in a suitable way, show that F has a fixed point, and this
would be our candidate for the solution. For this, we need some preparations.

Definition 1.1. Given a regularity structure (A, T,G), we say V ⊆ T is a sector if
V =

⊕
α∈A Vα with subspaces Vα ⊆ Tα and G(V ) ⊆ V .

Definition 1.2. If L =
∑
|k|=r ak∂

k is a differential operator, we say L̂ : V → T repre-
sents L if the following conditions hold:

• If τ ∈ Vα, then L̂τ ∈ Tα−r.

• L̂Γh = ΓhL̂.

• ΠaL̂τ = L(Πaτ).

We can also talk about products. In other words, we want to be able to multiply
f ∈ CαM and g ∈ CβM to get f � g ∈ Cα∧βM .

Recall that i we have a distribution F , then we can talk about

F ∗K “=”

∫
F (y)K(x− y) dy = F (y)K̃(y − x) dy =

∫
F (y)K̃x(y) dy,

where K̃(y) = K(−y), which suggests that we should define

(F ∗K)(ϕ) := F (K̃ ∗ ϕ).

For our purposes, we need to examine the regularity of F ∗K. A Schauder-type estimate
allows us to show that if K is singular at 0 with singularity of the form |x|α−d, then

F ∈ Cγ =⇒ F ∗K ∈ Cγ+α.

Here is the precise statement:

Theorem 1.1. Assume that K : Rd → R with the following conditions:
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1. suppK ⊆ B1(0)

2. K ∈ C∞ (this can be relaxed), and |∂`K(x)| ≤ c`|x|α−d−|`| for all x.

Then
F ∈ Cγ =⇒ F ∗K ∈ Cγ+α

for all γ ∈ R, though for γ ∈ Z, we need to replace the Hölder spaces with Hölder-Zygmund
spaces.

For the proof, we need a suitable candidate for function spaces that are equivalent to
Hölder spaces (and its variant would yield Besov spaces), except when γ ∈ Z. For γ < 0,
we have already discussed this; if r is the smallest integer such that r+ γ ≥ 0, then define

[u]γ,K = sup
x∈K

sup
α∈(0,1]

sup
ϕ∈Dr

|u(ϕδx)|
δγ

where Dr = {ϕ : ‖ϕ‖Cr ≤ 1, suppϕ ⊆ B1(0)}, and let

Cγloc = {u : [u]γ,K <∞ for all compact K}.

As for γ > 0 with γ = n+ γ0 and n ∈ N, define

[u]γ,K = sup
x∈K

sup
α∈(0,1]

sup
ϕ∈Dn

|〈u, ϕδx〉|
δγ

,

where Dn is the set of ϕ ∈ D such that
∫
ϕP (x) dx = 0 for all polynomials P with

degP ≤ n. It requires proof to show that when γ 6= Z, then these equivalent to the Hölder
norms.
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